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Synchronization of two interacting populations of oscillators
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We analyze synchronization between two interacting populations of different phase oscillators. For the
important case of asymmetric coupling functions, we find a much richer dynamical behavior compared to that
of symmetrically coupled populations of identical oscillators. It includes three types of bistabilities, higher
order entrainment, and the existence of states with unusual stability properties. All possible routes to synchro-
nization of the populations are presented and some stability boundaries are obtained analytically. The impact of
these findings for neuroscience is discussed.
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In its original sense synchronization describes the mutuainon to many living systems such as mammalian intestine
adjustment of frequencies between two interacting oscillatorand heart cell$2]. Moreover, such asymmetry appears in the
[1]. This route to synchronization differs from that taking phase reduction of nonisochronous oscillafdrd 2] and Jo-
place in large communities of oscillatdiz-5]. Motivated by  sephson junction array43,14], and it is used for modeling
this fact, Kuramoto extended the notion of synchronizationtime delayq1] and information concerning synaptic connec-
to a statistical theory of oscillator ensemb|€% The natural tions in a neural networl{15]. The natural frequencies
diversity among the components was considered through ein\*? are considered to be distributed according to a density
ther unimodal[6—8] or bimodal [6,9] frequency distribu- g12(w) of width y, symmetric about the meaa™? and
tions. unimodal.

In a pioneering work, Okuda and Kuramdt®) analyzed The phase coherence within each population is described
two' symmetrically cqupled populat_lons of identical phaseby the complex order parameters R1.2gu?
oscillators under the influence of noise. However, the impor-_ N et . . :
tant problem of synchronization between ensembles of oscif (1/N)Zj=1€ ", which permit us thZ)WI’Ite thfz)syste(m) n
lators remains almost unexplored, although communities ofe™™M$ of the mean field quantitiés®? and 2,
natural oscillators are usually composed of interacting sub- 12 (1.2 12
populationg[2]. For instance, it has been shown experimen- ai( 2= “’i( - KPR(l'Z)S'n(ai( - Yo+ a)
tally that synchronization arises between different neighbor- - K R®Ysin(g1? - 42 + ). 2)
ing visual cortex columns and also between different cortical ) )
areas, where synchronization processes are of crucial impor- |f the populations are uncoupled, i.&=0, each of them
tance[10]. Thus, it is a challenge to understand quantita-"éduces to the well known Kuramoto modé]. For a given

tively the routes to synchronization among macroscopic enKp this model ex.hibits a phase transition at a critical value of
sembles of oscillators. the frequency dispersal.. For y> v, the oscillators rotate

; : i i ; ; : 12 _ .
In this article we study two populations of phase oscilla-With their natural frequencies ard*? ~O(V1/N), but for
tors interacting asymmetrically, as is likely to occur for a ¥< Y. mutual entrainment occurs among a small fraction of

number of reasongsymmetric couplings, different popula- ©scillators giving rise to a finite value of the order parameter
tion sizes, time delays, ejc.In addition, we consider the R™2, Thus, a cluster of locked oscillators emerges through a

oscillators within each population to be nonidentical. TheHopf bifurcation of frequency)™? that, in generala#0),

system under study is then depends on the overall shape g2 (w) [11]. The drifting
N oscillators arrange in a stationary distribution that does not
. K . contribute to the order parametd®. Finally, for identical
f12 = 12 - S iy 0}1,2) +a) P 48 Y.

oscillatorsy=0, each population fully synchronizes in phase,

= R*2=1, for arbitrary smalK,.

N

K L0y 2 WhenK>0 the two locked clusters begin to interact. If
- NE sin(g™" = 6"+ a), (1) this interaction is similar to the frequency adjustment be-
=1 tween two coupled oscillators, one expects mutual locking

wherei=1,... ,N>1. Here,0i(1'2) describes the phase of the between these two clusters to occur via a saddle-node bifur-

ith oscillator in population 1 or 2, respectively. The popula-cation at some&=Kg [1]. E?ll?e(ﬂgy, fory=0, synchroniza-
tions are coupled internally with coupling strengiy, tion should arise atAw= "'~ 0'?),

whereas the interpopulation coupling is determinedkoy —
The asymmetry is introduced into the model through the Ke=Aw/(2 cosa). ©
phase shift = a< /2 [6,1]]. This permits the oscillators to In the following we investigate the dynamics @) in the

synchronize to a frequency that deviates from the simpldull (K,y)-parameter plane. In the thermodynamic limit a
average of their natural frequencies. This behavior is comeensity function can be defined so that?(6,t,w)dw d6
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describes the number of oscillators with natural frequencies T @] P*F )
in [w, w+dw] and phase ihd, 6+dd] at timet. For fixedw L B0 I

the distributionp*?(6,t, w) of the phase® is normalized to
unity. The evolution ofp?(6,t,w) obeys the continuity

equationgp®2/ gt=-a(p'>2 §12)/ 96, for which the incoher-
ent statep,=(27) ! is always a trivial solutiori7]. The func-
tion p*2(6,t,w) is real and 2r periodic in # and therefore
admits the Fourier expansiorp(lvz)(a,t,w):Ef‘;_mpl(l‘2>
X(t,w)e'’, where pi?=p "2  Thus the order parameter

can be written in terms of the Fourier components as> 05

- (1,2 * L

R(L2g¥ ):27T<p1(1'2)> [we use(f12(w)) to denote the fre- T
0

ia)

quency average weighted wigf?(w)]. Now, after inserting
(2) into the continuity equation, we obtain an infinite system
of integro-differential equations for the Fourier modes:

pl(l,Z) - iw|p|(l,2) + |p|(},12)7.,eia(K <P(11'2)> + K<p(12’l)>) FIG. 1. (K, y) phase diagram of systefth) assuming Lorentzian
02 i “(12 . 2.1 frequency distributionsdw=0.5,K,=1, and for different values of
—lpi” me (Kpy ) + K{py “7)). (4 a(nrad: (@ a=0, (b) @=0.1,(c) a=m/4, (d) a=1.15. Numerical

The stability ofp, can be analyzed by studying the evolution stability boundarie§N=1000 are indicated as solid lines. Dotted

12 lines represent analytical stability boundarigs obtained from Eq.
OL% perturbed statp! )(0’,t_’ w) _CIOSG'T tOPO (note that the (6). Note thaty,, fully overlaps with numerical results. Region I
p " are then small quantitipsLinearization of Eq(4) re-  gynchronization. Region II: coexistence. Region llI: incoherence.
veals that the only potentially unstable modeslarel and  |psets: bistability in the dashed regions arouncsee text
hencel=1 has the solutiop!"?(t,») =b®2(w)eM+0(|p/[?).

This leads to through a single Hopf bifurcation and both populations

g2 synchronize-to the same frequenQy w. The presence of a
b2 (w) = [Kp(b™?(w)) + K<b(2’1)(w)>]m- (5 single macroscopic oscillation is denoted as region I. When
K <Aw the instability is through @egeneratedHopf bifur-
Considering the distribution of frequencies to be of Lorent-cation. Both()\i,)\;) cross simultaneously the imaginary axis
zian type, g-?(w)=(y/ MY+ (0-o™?)?]?, the self- at y,=v,=K,/2 (lne CA’) and two _macroscopic oscilla-
consistent problen®) can be solved analytically. The stabil- tions with frequenciesQ,=F1/2JAw’-K?*+w emerge
ity of the incoherent statg, is then described by two pairs of (note that a saddle-node bifurcation should take plac® at

complex conjugate eigenvalues, namely, i.e., Kc=Aw). The region of coexistence of two different
Kde 1 ' macroscopic fields is labeled as Il. The inset of Figa)1l
Ao=—y+ —"2— + E\s"Kze'za -Aw?-io, (6) shows how the saddle-node lilad crosses the two Hopf

lines v, at a, and joins the Hopf curvey, at d. Thus the

with o= (0@ +w@)/2 for model=1, and the complex con- Hopf bifurcation is supercritical all along.,, except in
jugate forl=-1. Imposing R&\,)=0 defines explicitly the @A’d, where itis subcritical and hence a region of bistability

two critical curvesy.,(K) (see Fig. 1. Each curve represents P€tween states Ill/l and Il/l is observed. .
a Hopf bifurcation with frequency given b, =—Im(\,). The coupling-modified frequencies of the individual oscil-

The CUIVE Maye.., 7.) = Ye. Separates the region where the Iators_wi(l'_z):!|mt%0i(1'2)/t provide a useful measure of syn-
incoherent solution 11l is stable from the unstable regions lchrom;anon. wherK=0'(y< Yo the fr'equency-locked OS_C'I'
and Il lators in each population form a single plateau that is the
The eigenmode&>2(6,t,w)) near criticality are only contribution to the order parametgrote 'ghaljzo|=0 in
Eq. (7), and henceyP=0_t and ¢/ =Q,t] [Fig. 2a)]. By
(p'Y) (12w —izg i(6-0,1) increasingK, some of the oscillators in populations 1 and 2
(p?y) “\1/2m *Z.( 1 )€ *c.c. +Z(1 begin to lock in a second plateauf@t and()_, respectively,
according to Eq(7) [Fig. 2b)]. Hence,R%2 begin to oscil-
x( 1 )ei(o—n_t) +c.c. +0(|Z]? @) late with beating frequencQ=Q_-(),. Interestingly, new
iZg ' clusters synchronized to higher frequencies appear among

e . 1~ (1,2)
whereZ, (t)=eR¥*)t and c.c. denotes the complex conjugatethose drifting oscillators witl; ™ close to

of the preceding term. The modulus of the numizgr Q,=Q_+nAQ, wheren=1, +2, +3... (8)

=(Aw-VAw?-€2°K?)e7'?/K is a weight for the fraction of

frequencied), and()_ in populations 1 and 2, respectively. These plateaug,,, which are similar to Shapiro step3,16],
The symmetric case=0 [Fig. 1(a)]. Our eigenmodeé&/)  are not explained by Eq.7), but they can be understood

coincide with those of3] (replacing y by the noise inten- from the fact that the drifting oscillators are simultaneously

sity). From Eq.(6) the state Ill can become unstable in two forced by the two order parametéi. The plateaus grow in

different ways. WherK > Aw the transition lll-I takes place size and in number a&Q)— 0 and hence they make a non-
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FIG. 2. Coupling-modified frequencie®; of populations 1 t t

(black) and 2(gray) as a function of the oscillator’s index oscil-

lator i has natural frequencywi(l’z):a(l’zh7tar[(7r/2)(2i—N

-1)/(N+1)] (Lorentzian (Aw=0.5,0=0,K,=1, and N=1000.

First row: «=0,y=0.4 and(a) K=0, (b) K=0.4, (c) K=0.41. Sec-
ond and third rowsa=7/4,K=0.53 andd) y=0.5,(e) y=0.47,(f)

v=0.187,(g) y=0.15,(h) y=0.12,(i) y=0.118.

FIG. 3. Order paramete®? (black andR? (gray) and phase
difference Ay as a function of time(N=1000 Aw:O.S,E:O,Kp
=1). At t=0 the phases were equally spaced(q 27]. (a) «
=m/4,y=0.12 K=0.53(region Il) [Fig. 2(h)]; (b) and(c) represent
regions II(a=1.2K=0.8) and I'(e=1.2 K=1.09, respectively
(y=0, see Fig. #
zero contribution to the order parameters that becomes im-
portant as the system approaches the saddle-node bifurcating
line Ba from the region Il. At this line the synchronized state tion is increasingly inhibited due to frustratigi]. At the
| is reachedAQ2=0, and the steps abruptly disapp¢Biy.  same time]z| decreases, indicating a lower degree of syn-
2(c)]. _ _ _ chronization between the populations. This is in qualitative
_ The asymmetric caser>0 [Figs. 1(b)-1(d)]. As a IS agreement with the approach of the saddle-node Bdeo
increased from zero, the bifurcating linesg, _and Ve spI|.t the y=0 axis[Figs. Xc) and Xd)]. At the critical valuea
due to the breaking of symmetry. Interestingly, the €I9€N~ " the line Bb collides with they=0 axis and disappears
mgdes(?)bdo nolt r(;flect ;hil asdyf?metry through_t?e amr;}ll- [see inset of Fig. )]. Therefore, fore> " synchronization
tudes|zq|, but only through the different exponential growths between the macroscopic oscillations occurs generally when

Zi(t)'. Figures 2d)-2(i) show the“.)‘ for a.:WM [Fig. e, the oscillation of frequency)_ dies in the Hopf bifurcation
keepingK constant and decreasingcontinuously from re- —

) . . . CA.
gion lll. We find that incoherenc@Fig. 2(d)] always goes Lo . " .
unstable through a single Hopf bifurcatiog, [at ), in Fig. The limity=0 EF'g,' & Th? transition p_omB follgw§ Eq.
2(e)] and nucleation first takes place mainly within popula-(3) @S farasx<a (Fig. ). Since the oscillators within egch
tion 2. The second Hopf bifurcatioBA [at )_ in Fig. 2f)]  Population are identical, they synchronize in phake;
follows y.. when the system is close enough to the incoher=1, @nd the population’s dynamics reduce to that of a system
ent state Ill. Asy is decreased further, the system approache8f two nonidentical oscillators. However, for=a’ the syn-
the saddle-node bifurcatidbd, and an increasing number of chronization transition occurs via a Hopf bifurcatigine
oscillators in population 1 becomes entrained to the frequerA”), and the behavior in each population is of higher com-
cies(8) [Figs. 2g) and 2h)]. In consequence the order pa- Plexity. As soon asy reaches the critical value (point P),
rameterRY oscillates with a very large amplitude at fre- the curveK splits into two bifurcating linex;, andK{ that
quencyAQ whereasR'? remains almost constafftig. 3a)]. enclose the new regions’land I where the order param-
The phase difference between the order paramefeps eters are not synchroniz¢Big. 3b)] and synchronize@Fig.
= V- reveals the presence of such clustexs: [Fig.  3(c)], respectively. Within those regions the oscillators in
3(a)] is bounded despite the fact that the populations are nqtopulation 1 are not in-phase synchronized, whereas the

locked in frequencyFig. 2(h)]. population 2 shows perfect in-phase entrainniéings. 3b)
The bistability regiongFigs. Xb) and Xc) insef are lo-  and 3c)]. _ _ - _
cated around the intersectianof the Hopf lineCA with the Finally we outline a linear stability analysis of the syn-

saddle-node lin@d. Within the region enclosed bgbathe  chronized state (y=0) which confirms the loss of stability

states | and Il coexist, as in the=0 case. In contrast, the of the in-phase state of population 1. From ED, the phase

region enclosed bpadis surrounded only by the state | and difference  between  the  populations s Ay

a new bistability between a small/large amplitude of the syn=arcsifiAw/(2K cosa)]. Then linearization of1) results in

chronized oscillation is observed. a matrix withN—1 eigenvalueg., andN-1 eigenvalueg:._
With increase ina, the synchronization regions | and Il characterizing the stability of the in-phase synchronized

become gradually smaller becausesas /2 synchroniza- states of populations 1 and 2, respectively,
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FIG. 4. Phase diagraifiK, «) for y=0,Aw=0.5. Boundarie,
and K'C are obtained analytically from Eq&) and(9), respectively,
whereas the symbols and A correspond to numerical results. All
other boundaries are determined numerically. Regigsgrichroni-
zatior) and Il (drift) are characterized b2 =1. Within regions
I” (A¢ bounded and I (Ay not boundell RV <1 whereasR®
=1 (see text Dashed regions present bistability between states
and II' (horizontal dashgsand between | and I(vertical dashes

pe ==K, Cosa — K cog+Ay+a) <0, 9

and two eigenvaluegy=0,u.=—2K cosa cosAy [note that
ne=0 leads to Eq(3)]. Since w/2>A#>0, the condition
(9) is violated only for the population 1. Thys,=0 deter-
mines the boundarly(:: (and hence the poirR) in very good
agreement with the numeric¢gig. 4).
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Notice that withK=0 we recover the in-phase stability
condition for a single populatiofK, cosa>0. For|a|> /2
this state becomes unstable and reaches a neutrally stable
incoherent state. This issue has been the subject of a great
deal of research in connection to the dynamics of devices
consisting of Josephson junctiofi3]. In the present case,
however, even fofa| < /2 the in-phase state in one popu-
lation can be destabilize@opulation 3 or overstabilized
(population 2 due to the interaction with the other popula-
tion. The global stability properties of the statésahd II' in
population 1 are interesting directions of further study: We
stress thaR™ in Figs. 3b) and 3c) strongly depends on
in(izt;al conditions and on perturbations, in contrast\t¢y and
R“.

The mean field modell) shows rich behavior despite its
simplicity, especially fora# 0. Beyond its importance for
the theory of synchronization, oscillatory networks consist-
ing of interacting subpopulations are common in neuro-
science, and in general in many natural syst¢PhsFor ex-
ample, synchronization seems to be a central mechanism for
neuronal information processing and for communication be-
tween different brain areg40,15. This plays a crucial role
in pattern recognition and motor control tagk®]. In addi-
tion, the recordings of neuronal activity are usually taken in
different brain regions, which constitute a network of inter-
acting subpopulations of neurofs0]. Thus, our study rep-
resents an important step into understanding macroscopic
synchronization in complex network architectures.
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