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We analyze synchronization between two interacting populations of different phase oscillators. For the
important case of asymmetric coupling functions, we find a much richer dynamical behavior compared to that
of symmetrically coupled populations of identical oscillators. It includes three types of bistabilities, higher
order entrainment, and the existence of states with unusual stability properties. All possible routes to synchro-
nization of the populations are presented and some stability boundaries are obtained analytically. The impact of
these findings for neuroscience is discussed.
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In its original sense synchronization describes the mutual
adjustment of frequencies between two interacting oscillators
[1]. This route to synchronization differs from that taking
place in large communities of oscillators[2–5]. Motivated by
this fact, Kuramoto extended the notion of synchronization
to a statistical theory of oscillator ensembles[6]. The natural
diversity among the components was considered through ei-
ther unimodal[6–8] or bimodal [6,9] frequency distribu-
tions.

In a pioneering work, Okuda and Kuramoto[3] analyzed
two symmetrically coupled populations of identical phase
oscillators under the influence of noise. However, the impor-
tant problem of synchronization between ensembles of oscil-
lators remains almost unexplored, although communities of
natural oscillators are usually composed of interacting sub-
populations[2]. For instance, it has been shown experimen-
tally that synchronization arises between different neighbor-
ing visual cortex columns and also between different cortical
areas, where synchronization processes are of crucial impor-
tance [10]. Thus, it is a challenge to understand quantita-
tively the routes to synchronization among macroscopic en-
sembles of oscillators.

In this article we study two populations of phase oscilla-
tors interacting asymmetrically, as is likely to occur for a
number of reasons(asymmetric couplings, different popula-
tion sizes, time delays, etc.). In addition, we consider the
oscillators within each population to be nonidentical. The
system under study is then
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wherei =1,… ,N@1. Here,ui
s1,2d describes the phase of the

ith oscillator in population 1 or 2, respectively. The popula-
tions are coupled internally with coupling strengthKp,
whereas the interpopulation coupling is determined byK.
The asymmetry is introduced into the model through the
phase shift 0øa,p /2 [6,11]. This permits the oscillators to
synchronize to a frequency that deviates from the simple
average of their natural frequencies. This behavior is com-

mon to many living systems such as mammalian intestine
and heart cells[2]. Moreover, such asymmetry appears in the
phase reduction of nonisochronous oscillators[1,12] and Jo-
sephson junction arrays[13,14], and it is used for modeling
time delays[1] and information concerning synaptic connec-
tions in a neural network[15]. The natural frequencies
vi

s1,2d are considered to be distributed according to a density
gs1,2dsvd of width g, symmetric about the meanv̄s1,2d and
unimodal.

The phase coherence within each population is described
by the complex order parameters Rs1,2deics1,2d

=s1/Ndo j=1
N eiu j

s1,2d
, which permit us to write the system(1) in

terms of the mean field quantitiesRs1,2d andcs1,2d,

u̇i
s1,2d = vi

s1,2d − KpR
s1,2dsinsui

s1,2d − cs1,2d + ad

− K Rs2,1dsinsui
s1,2d − cs2,1d + ad. s2d

If the populations are uncoupled, i.e.,K=0, each of them
reduces to the well known Kuramoto model[6]. For a given
Kp this model exhibits a phase transition at a critical value of
the frequency dispersalgc. For g.gc the oscillators rotate
with their natural frequencies andRs1,2d,OsÎ1/Nd, but for
g,gc mutual entrainment occurs among a small fraction of
oscillators giving rise to a finite value of the order parameter
Rs1,2d. Thus, a cluster of locked oscillators emerges through a
Hopf bifurcation of frequencyVs1,2d that, in generalsaÞ0d,
depends on the overall shape ofgs1,2dsvd [11]. The drifting
oscillators arrange in a stationary distribution that does not
contribute to the order parameters[6]. Finally, for identical
oscillatorsg=0, each population fully synchronizes in phase,
Rs1,2d=1, for arbitrary smallKp.

When K.0 the two locked clusters begin to interact. If
this interaction is similar to the frequency adjustment be-
tween two coupled oscillators, one expects mutual locking
between these two clusters to occur via a saddle-node bifur-
cation at someK=Kc [1]. Especially, forg=0, synchroniza-
tion should arise atsDv; v̄s1d−v̄s2dd,

Kc = Dv/s2 cosad. s3d

In the following we investigate the dynamics of(2) in the
full sK ,gd-parameter plane. In the thermodynamic limit a
density function can be defined so thatrs1,2dsu ,t ,vddv du
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describes the number of oscillators with natural frequencies
in fv ,v+dvg and phase infu ,u+dug at time t. For fixedv
the distributionrs1,2dsu ,t ,vd of the phasesu is normalized to
unity. The evolution ofrs1,2dsu ,t ,vd obeys the continuity

equation]rs1,2d /]t=−]srs1,2du̇s1,2dd /]u, for which the incoher-
ent stater0=s2pd−1 is always a trivial solution[7]. The func-
tion rs1,2dsu ,t ,vd is real and 2p periodic inu and therefore
admits the Fourier expansionrs1,2dsu ,t ,vd=ol=−`

` rl
s1,2d

3st ,vdeilu, where r−l
s1,2d=rl

* s1,2d. Thus the order parameter
can be written in terms of the Fourier components as
Rs1,2deics1,2d

=2pkr1
* s1,2dl [we usekf s1,2dsvdl to denote the fre-

quency average weighted withgs1,2dsvd]. Now, after inserting
(2) into the continuity equation, we obtain an infinite system
of integro-differential equations for the Fourier modes:

ṙl
s1,2d = − ivlrl

s1,2d + lrl−1
s1,2dpeiasKpkr1

s1,2dl + Kkr1
s2,1dld

− lrl+1
s1,2dpe−iasKpkr1

* s1,2dl + Kkr1
* s2,1dld. s4d

The stability ofr0 can be analyzed by studying the evolution
of a perturbed staters1,2dsu ,t ,vd close tor0 (note that the
rl

s1,2d are then small quantities). Linearization of Eq.(4) re-
veals that the only potentially unstable modes arel = ±1 and
hencel =1 has the solutionr1

s1,2dst ,vd=bs1,2dsvdelt+Osurlu2d.
This leads to

bs1,2dsvd = fKpkbs1,2dsvdl + Kkbs2,1dsvdlg
eia/2

l + iv
. s5d

Considering the distribution of frequencies to be of Lorent-
zian type, gs1,2dsvd=sg /pdfg2+sv−v̄s1,2dd2g−1, the self-
consistent problem(5) can be solved analytically. The stabil-
ity of the incoherent stater0 is then described by two pairs of
complex conjugate eigenvalues, namely,

l± = − g +
Kpe

ia

2
±

1

2
ÎK2ei2a − Dv2 − iv̄, s6d

with v̄;sv̄s1d+v̄s2dd /2 for model =1, and the complex con-
jugate for l =−1. Imposing Resl±d=0 defines explicitly the
two critical curvesgc±sKd (see Fig. 1). Each curve represents
a Hopf bifurcation with frequency given byV± ;−Imsl±d.
The curve maxsgc+,gc−d=gc+ separates the region where the
incoherent solution III is stable from the unstable regions I
and II.

The eigenmodeskrs1,2dsu ,t ,vdl near criticality are

Skrs1dl
krs2dl

D = S1/2p

1/2p
D + Z+stdS− iz0

1
Deisu−V+td + c . c . +Z−std

3S 1

iz0
Deisu−V−td + c . c . +OsuZu2d, s7d

whereZ±std;eResl±dt, and c.c. denotes the complex conjugate
of the preceding term. The modulus of the numberz0
;sDv−ÎDv2−ei2aK2de−ia /K is a weight for the fraction of
frequenciesV+ andV− in populations 1 and 2, respectively.

The symmetric casea=0 [Fig. 1(a)] . Our eigenmodes(7)
coincide with those of[3] (replacingg by the noise inten-
sity). From Eq.(6) the state III can become unstable in two
different ways. WhenK.Dv the transition III-I takes place

through a single Hopf bifurcation and both populations
synchronize-to the same frequencyV=v̄. The presence of a
single macroscopic oscillation is denoted as region I. When
K,Dv the instability is through adegeneratedHopf bifur-
cation. Bothsl± ,l±

* d cross simultaneously the imaginary axis
at gc±=gc=Kp/2 (line CA8) and two macroscopic oscilla-
tions with frequenciesV±= 71/2ÎDv2−K2+v̄ emerge
(note that a saddle-node bifurcation should take place atA8,
i.e., Kc=Dv). The region of coexistence of two different
macroscopic fields is labeled as II. The inset of Fig. 1(a)
shows how the saddle-node linebad crosses the two Hopf
lines gc at a, and joins the Hopf curvegc+ at d. Thus the
Hopf bifurcation is supercritical all alonggc+, except in
aA8d, where it is subcritical and hence a region of bistability
between states III/I and II/I is observed.

The coupling-modified frequencies of the individual oscil-
latorsṽi

s1,2d=limt→`ui
s1,2d / t provide a useful measure of syn-

chronization: whenK=0sg,gcd the frequency-locked oscil-
lators in each population form a single plateau that is the
only contribution to the order parameters[note thatuz0u=0 in
Eq. (7), and hencecs1d=V−t and cs2d=V+t] [Fig. 2(a)]. By
increasingK, some of the oscillators in populations 1 and 2
begin to lock in a second plateau atV+ andV−, respectively,
according to Eq.(7) [Fig. 2(b)]. Hence,Rs1,2d begin to oscil-
late with beating frequencyDV;V−−V+. Interestingly, new
clusters synchronized to higher frequencies appear among
those drifting oscillators withṽi

s1,2d close to

Vn = V− + nDV, wheren = 1, ± 2, ± 3…. s8d

These plateausVn, which are similar to Shapiro steps[8,16],
are not explained by Eq.(7), but they can be understood
from the fact that the drifting oscillators are simultaneously
forced by the two order parameters(7). The plateaus grow in
size and in number asDV→0 and hence they make a non-

FIG. 1. sK ,gd phase diagram of system(1) assuming Lorentzian
frequency distributions,Dv=0.5,Kp=1, and for different values of
a (in rad): (a) a=0, (b) a=0.1,(c) a=p /4, (d) a=1.15. Numerical
stability boundariessN=1000d are indicated as solid lines. Dotted
lines represent analytical stability boundariesgc± obtained from Eq.
(6). Note thatgc+ fully overlaps with numerical results. Region I:
synchronization. Region II: coexistence. Region III: incoherence.
Insets: bistability in the dashed regions aroundA (see text).
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zero contribution to the order parameters that becomes im-
portant as the system approaches the saddle-node bifurcating
line Ba from the region II. At this line the synchronized state
I is reached,DV=0, and the steps abruptly disappear[Fig.
2(c)].

The asymmetric case, a.0 [Figs. 1(b)–1(d)] . As a is
increased from zero, the bifurcating linesgc+ and gc− split
due to the breaking of symmetry. Interestingly, the eigen-
modes(7) do not reflect the asymmetry through the ampli-
tudesuz0u, but only through the different exponential growths
Z±std. Figures 2(d)–2(i) show theṽi for a=p /4 [Fig. 1(c)],
keepingK constant and decreasingg continuously from re-
gion III. We find that incoherence[Fig. 2(d)] always goes
unstable through a single Hopf bifurcationgc+ [at V+ in Fig.
2(e)] and nucleation first takes place mainly within popula-
tion 2. The second Hopf bifurcationCA [at V− in Fig. 2(f)]
follows gc− when the system is close enough to the incoher-
ent state III. Asg is decreased further, the system approaches
the saddle-node bifurcationBd, and an increasing number of
oscillators in population 1 becomes entrained to the frequen-
cies (8) [Figs. 2(g) and 2(h)]. In consequence the order pa-
rameterRs1d oscillates with a very large amplitude at fre-
quencyDV whereasRs2d remains almost constant[Fig. 3(a)].
The phase difference between the order parametersDc
;cs1d−cs2d reveals the presence of such clusters:Dc [Fig.
3(a)] is bounded despite the fact that the populations are not
locked in frequency[Fig. 2(h)].

The bistability regions[Figs. 1(b) and 1(c) inset] are lo-
cated around the intersectiona of the Hopf lineCA with the
saddle-node lineBd. Within the region enclosed byAba the
states I and II coexist, as in thea=0 case. In contrast, the
region enclosed byAad is surrounded only by the state I and
a new bistability between a small/large amplitude of the syn-
chronized oscillation is observed.

With increase ina, the synchronization regions I and II
become gradually smaller because asa→p /2 synchroniza-

tion is increasingly inhibited due to frustration[1]. At the
same time,uz0u decreases, indicating a lower degree of syn-
chronization between the populations. This is in qualitative
agreement with the approach of the saddle-node lineBd to
the g=0 axis [Figs. 1(c) and 1(d)]. At the critical valuea
=a* the line Bb collides with theg=0 axis and disappears
[see inset of Fig. 1(d)]. Therefore, fora.a* synchronization
between the macroscopic oscillations occurs generally when
the oscillation of frequencyV− dies in the Hopf bifurcation
CA9.

The limitg=0 (Fig. 4). The transition pointB follows Eq.
(3) as far asa,a* (Fig. 1). Since the oscillators within each
population are identical, they synchronize in phase,Rs1,2d

=1, and the population’s dynamics reduce to that of a system
of two nonidentical oscillators. However, foraùa* the syn-
chronization transition occurs via a Hopf bifurcation(line
A9), and the behavior in each population is of higher com-
plexity. As soon asa reaches the critical valuea* (point P),
the curveKc splits into two bifurcating linesKc

I andKc
II that

enclose the new regions II8 and I8 where the order param-
eters are not synchronized[Fig. 3(b)] and synchronized[Fig.
3(c)], respectively. Within those regions the oscillators in
population 1 are not in-phase synchronized, whereas the
population 2 shows perfect in-phase entrainment[Figs. 3(b)
and 3(c)].

Finally we outline a linear stability analysis of the syn-
chronized state Isg=0d which confirms the loss of stability
of the in-phase state of population 1. From Eq.(1), the phase
difference between the populations is Dc
=arcsinfDv / s2K cosadg. Then linearization of(1) results in
a matrix withN−1 eigenvaluesm+ andN−1 eigenvaluesm−
characterizing the stability of the in-phase synchronized
states of populations 1 and 2, respectively,

FIG. 2. Coupling-modified frequenciesṽi of populations 1
(black) and 2(gray) as a function of the oscillator’s indexi: oscil-
lator i has natural frequencyvi

s1,2d=v̄s1,2d+g tanfsp /2ds2i −N
−1d / sN+1dg (Lorentzian) (Dv=0.5,v̄=0,Kp=1, and N=1000).
First row: a=0,g=0.4 and(a) K=0, (b) K=0.4, (c) K=0.41. Sec-
ond and third rows:a=p /4 ,K=0.53 and(d) g=0.5,(e) g=0.47,(f)
g=0.187,(g) g=0.15,(h) g=0.12,(i) g=0.118.

FIG. 3. Order parametersRs1d (black) andRs2d (gray) and phase
differenceDc as a function of timesN=1000,Dv=0.5,v̄=0,Kp

=1d. At t=0 the phases were equally spaced in(0, 2p]. (a) a
=p /4 ,g=0.12,K=0.53(region II) [Fig. 2(h)]; (b) and(c) represent
regions II8sa=1.2,K=0.8d and I8sa=1.2,K=1.05d, respectively
(g=0, see Fig. 4).
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m± = − Kp cosa − K coss±Dc + ad , 0, s9d

and two eigenvaluesm0=0,mc=−2K cosa cosDc [note that
mc=0 leads to Eq.(3)]. Sincep /2.Dc.0, the condition
(9) is violated only for the population 1. Thusm+=0 deter-
mines the boundaryKc

I (and hence the pointP) in very good
agreement with the numerics(Fig. 4).

Notice that withK=0 we recover the in-phase stability
condition for a single population,Kp cosa.0. Foruau.p /2
this state becomes unstable and reaches a neutrally stable
incoherent state. This issue has been the subject of a great
deal of research in connection to the dynamics of devices
consisting of Josephson junctions[13]. In the present case,
however, even foruau,p /2 the in-phase state in one popu-
lation can be destabilized(population 1) or overstabilized
(population 2) due to the interaction with the other popula-
tion. The global stability properties of the states I8 and II8 in
population 1 are interesting directions of further study: We
stress thatRs1d in Figs. 3(b) and 3(c) strongly depends on
initial conditions and on perturbations, in contrast toDc and
Rs2d.

The mean field model(1) shows rich behavior despite its
simplicity, especially foraÞ0. Beyond its importance for
the theory of synchronization, oscillatory networks consist-
ing of interacting subpopulations are common in neuro-
science, and in general in many natural systems[2]. For ex-
ample, synchronization seems to be a central mechanism for
neuronal information processing and for communication be-
tween different brain areas[10,15]. This plays a crucial role
in pattern recognition and motor control tasks[10]. In addi-
tion, the recordings of neuronal activity are usually taken in
different brain regions, which constitute a network of inter-
acting subpopulations of neurons[10]. Thus, our study rep-
resents an important step into understanding macroscopic
synchronization in complex network architectures.
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FIG. 4. Phase diagramsK ,ad for g=0,Dv=0.5. BoundariesKc

andKc
I are obtained analytically from Eqs.(3) and(9), respectively,

whereas the symbolsh andn correspond to numerical results. All
other boundaries are determined numerically. Regions I(synchroni-
zation) and II (drift) are characterized byRs1,2d=1. Within regions
I8 (Dc bounded) and II8 (Dc not bounded) Rs1d,1 whereasRs2d

=1 (see text). Dashed regions present bistability between states I
and II8 (horizontal dashes) and between I and I8 (vertical dashes).
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